

Семинар в г. Самара 18.02.2011

Миронов Сергей инженер по применению, «КОМПЭЛ» s.mironov@compel.ru

Как организовать и чем питать светодиоды?

Корпус (радиатор)

Источник питания

Источник света

Один из критериев выбора при заданных параметрах это отношение

ЦЕНА КАЧЕСТВО

Основные качественные показатели светодиодной системы освещения

- Светотехнические световой поток, цветовая температура, пульсации и т.п.
- Надежность
- Энергоэффективность
- Электромагнитная совместимость (ЭМС)
- Электробезопасность
- Соответствие требованиям условий эксплуатации

температурный диапазон эксплуатации, класс защиты ІР

На какие качественные показатели влияет источник питания?

- Светотехнические световой поток, цветовая температура, пульсации и т.п.
- Надежность
- Энергоэффективность
- Электромагнитная совместимость (ЭМС)
- Электробезопасность
- Соответствие требованиям условий эксплуатации

температурный диапазон эксплуатации, класс защиты ІР

Нормативные документы и требования к источнику питания

ALC: NO.			
No	Стандарты действующие в России	Международные стандарты	Наименование
1	ГОСТ Р МЭК 60065-2005	MЭК 60065	Требования безопасности
2	FOCT P51318.14.1-2006	EN55015	радиопомехи индустриальные (ЭМС)
3	ΓΟCT P51317.3.2-2006	IEC 61000-3-2	Эмиссия гармонических составляющих (ЭМС)
4	ΓΟ CT P51317.3.3-2008	IEC 61000-3-3	Ограничение изменений напряжения (ЭМС)

+ дополнительные требования с учетом особенностей применения: защита от импульсов повышенной энергии, устойчивость к воздействию помех и др.

Коэффициент пульсаций светового потока

Светодиод – безынерционный прибор

Колебания выходных параметров источника питания приводят к пульсациям светового потока

Коэффициент пульсаций в зависимости от применения определен в

СанПиН 2.2.1 2.1.1.2585-10 (15.03.2010г)

самая жесткая норма 0%; 10% (в зависимости от

функционального назначения помещения)

Основные параметры источников питания

Электрические параметры:

- диапазон входного/выходного напряжения;
- значение выходного тока;
- выходная мощность (минимальная и максимальная);
- КПД (коэффициент полезного действия);
- наличие или отсутствие коррекции коэффициента мощности (ККМ, PFC);
- наличие или отсутствие гальванической связи с питающей сетью.

Конструктивные параметры:

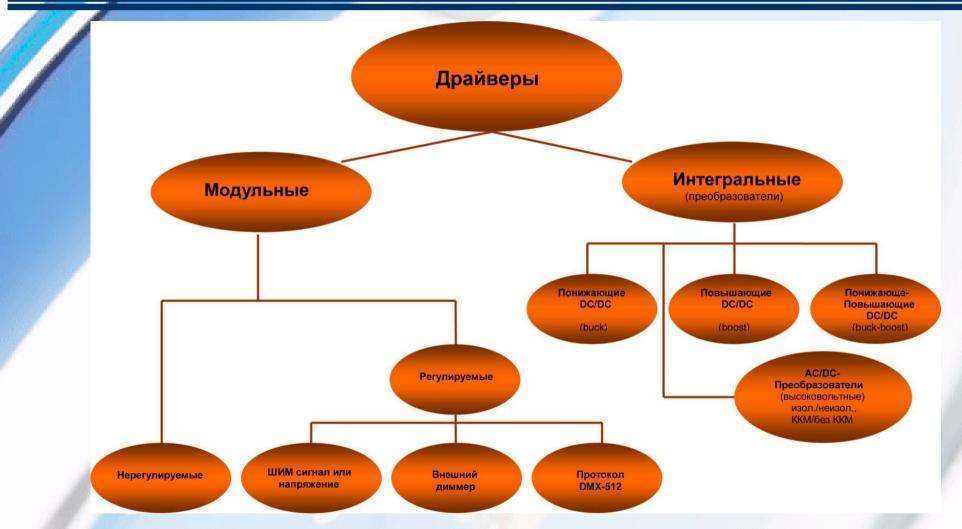
- класс защиты от внешних воздействующих факторов (ІР);
- диапазон рабочей температуры;
- габаритные размеры и масса.

Как быть?

ГОСТы

СанПиН

Электрические параметры Конструктивные требования


- применить готовый модульный источник;
- разработать собственный источник;

Зависит от ряда факторов

Какие бывают источники питания/драйверы

когда применяются интегральные драйверы?

- Требуется питать светодиоды «нестандартным» значением тока
- Имеется «нестандартное» напряжение питания для разрабатываемого устройства
- Необходимо осуществлять регулировку тока через светодиоды
- Конструкция модульного драйвера не подходит под разрабатываемое устройство
- Необходимо минимизировать габариты устройства
- Снизить себестоимость изделия

Интегральные драйверы обеспечивают разработчику свободу выбора электрических и конструктивных параметров источника питания

Классификация интегральных драйверов

AC/DC – преобразователи - наиболее востребованный класс интегральных драйверов.

На что обращать внимание?

1. Схема построения:

изолированный или неизолированный входвыход;

2. Коррекция коэффициента мощности:

отсутствие или наличие (однокаскадная или двухкаскадная);

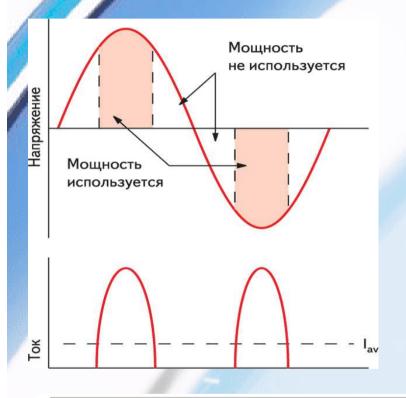
3. КПД:

потери при преобразовании (количество преобразований), значение опорного напряжения в петле ОС и др.

Электрическая изоляция вход-выход

ГОСТ Р МЭК 60598-99 Светильники. Общие требования и методы испытания.

Классы защиты от поражения электрическим током:


класс Г Основная изоляция + защитное заземление (1,5кВ);

класс II Двойная (усиленная) изоляция (3,6кВ);

класс III Безопасное сверхнизкое напряжение не более 50B (0,5кВ).

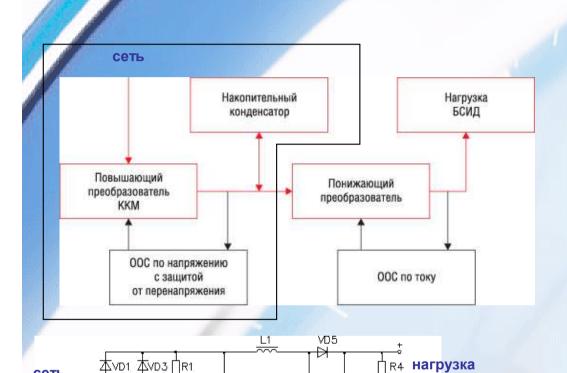
Что такое коррекция коэффициента мощности?

λ=Рвх ак/Sвх полн коэффициент мощности

КПД=(Рвых ак/ Рвх ак)х100%

ГОСТ Р 51317.3.2-2006 ...эмиссия гармонических составляющих тока....

Схемная реализация ККМ:


- пассивная;
- активная

Значение коэффициента мощности	Высокое	Хорошее	Удовлетворительное	Низкое	Неудовлетворительное
λ	95100 %	8095 %	6580 %	5065 %	050 %
cos φ	0,951	0,80,95	0,650,8	0,50,65	00,5

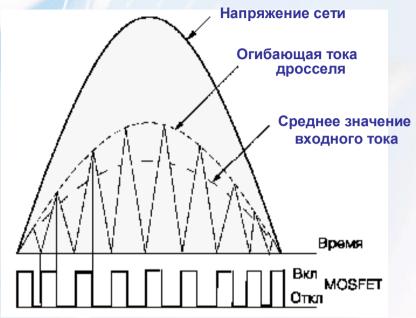
Блок схема ККМ с повышением

(многокаскадный)

ΪR3

Схема

управления

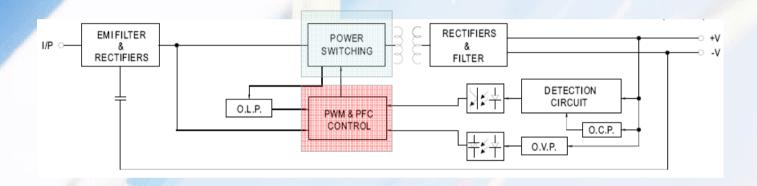

±VD2 ±VD4

или

понижающий

R5 преобразователь

сеть

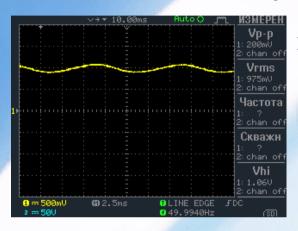


Режимы работы (активный ККМ):

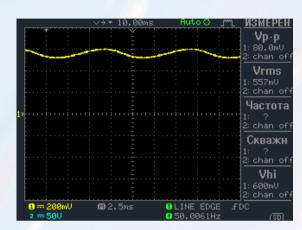
- Дискретный (небольшие мощности)
- Непрерывный (повышенной мощности)
- Критическая проводимость (более сложный в реализации)

Блок схема однокаскадного преобразователя с ККМ

форма огибающей выпрямленного напряжения сети и ОС воздействуют через схему управления на ключевой элемент


Форма тока источника питания

однокаскадный ККМ при 100% нагрузке и 50% диммировании)


100%

Форма выходного тока


50%

пульсации 7-10%

Формы входного тока и напряжения

Сравнение схем ККМ

Однокаскадная

Плюсы:

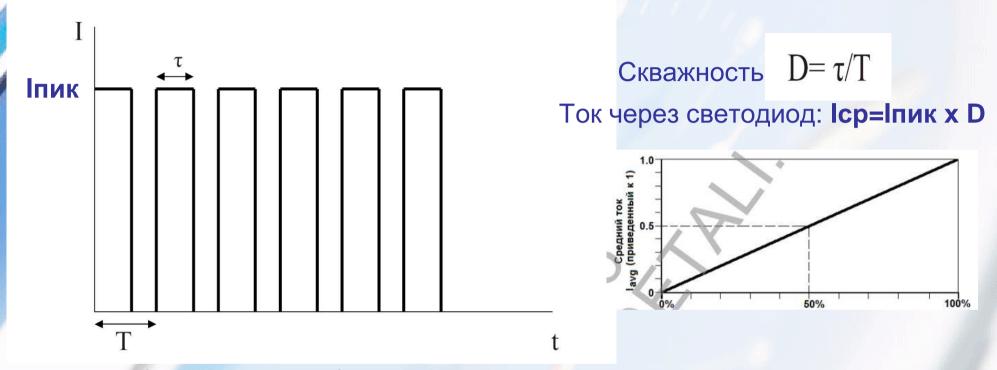
- Наиболее простая;
- высокое значение КПД;
- **-** ЭМС

Минусы:

- пульсации выходного тока;
- чувствительность выходного тока к перепадам входного напряжения
- влияние ОС на КМ ниже коррекция

Многокаскадная

Плюсы:


- Выходной ток без пульсаций;
- Выходной ток менее чувствителен к перепадам входного напряжения

Минусы:

- сложная;
- ЭМС;
- КПД?

Димминг (регулировка яркости) светодиодов

Для обеспечения стабильности хроматических характеристик регулировку тока нужно осуществлять методом ШИМ.

Всегда ли это нужно? пульсации светового потока 100%

Схемы включения светодиодов

Важно! Источник питания светодиодов - это источник стабильного тока

Как выбрать рабочую точку светодиода?

Правильные способы питания светодиодов

Есть ограничения (ток/мощность, количество каналов/цена) при использовании модульных источников

Схемы включения светодиодов

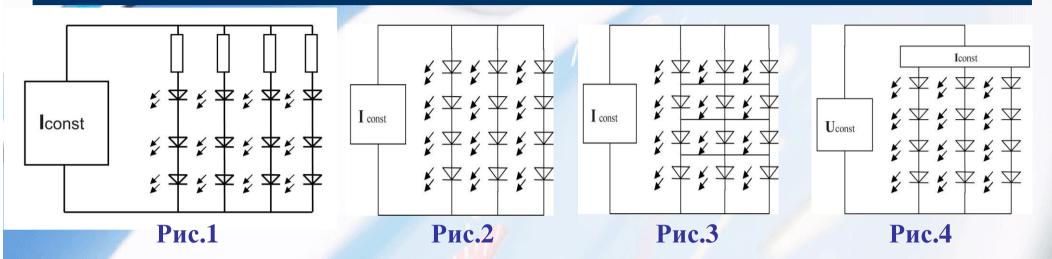


Схема Рис.1: хороший вариант (некоторые потери и требуется подбор токовыравнивающих элементов)

Схема Рис.2: приемлемый вариант при соблюдении некоторых условий (биннинг по напряжению).

Схема Рис.3: матричное включение ???

Схема **Рис.4: оптимальный вариант**. **Iconst** – многоканальная ИС на все цепочки или одноканальная для каждой цепочки (вариант группового питания AC/DC-DC/DC).

Недостаток: двойное преобразование – более низкий общий КПД.

Схема Рис.5: Схема может применяться при небольших токах

(десятки мА) и в узком температурном диапазоне, пониженный КПД

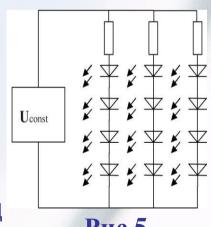
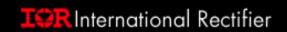


Рис.5

Производители интегральных драйверов

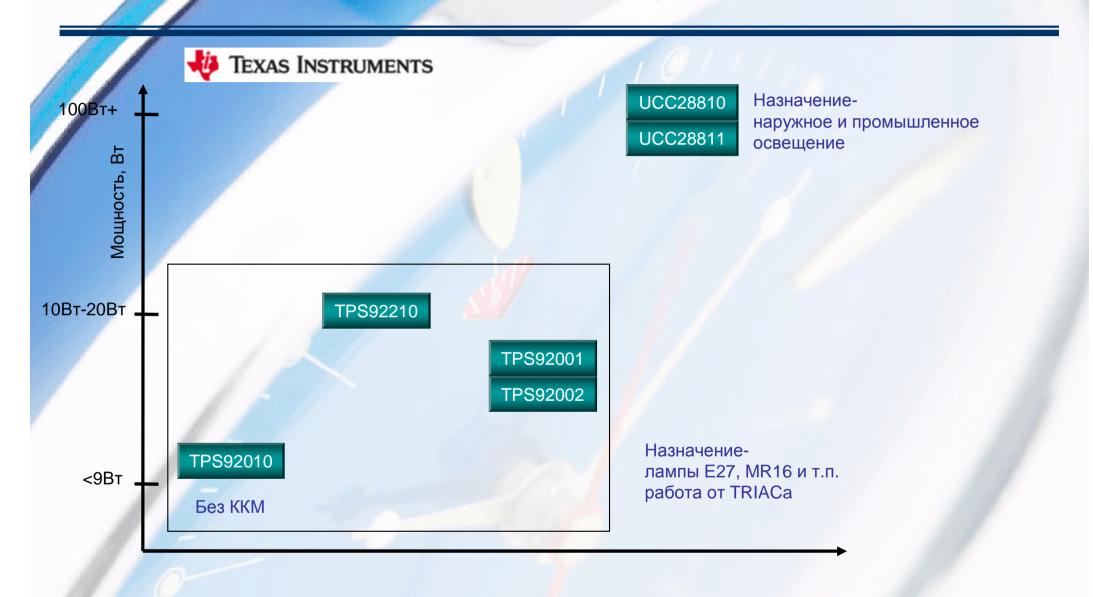
- Texas Instruments (TI)

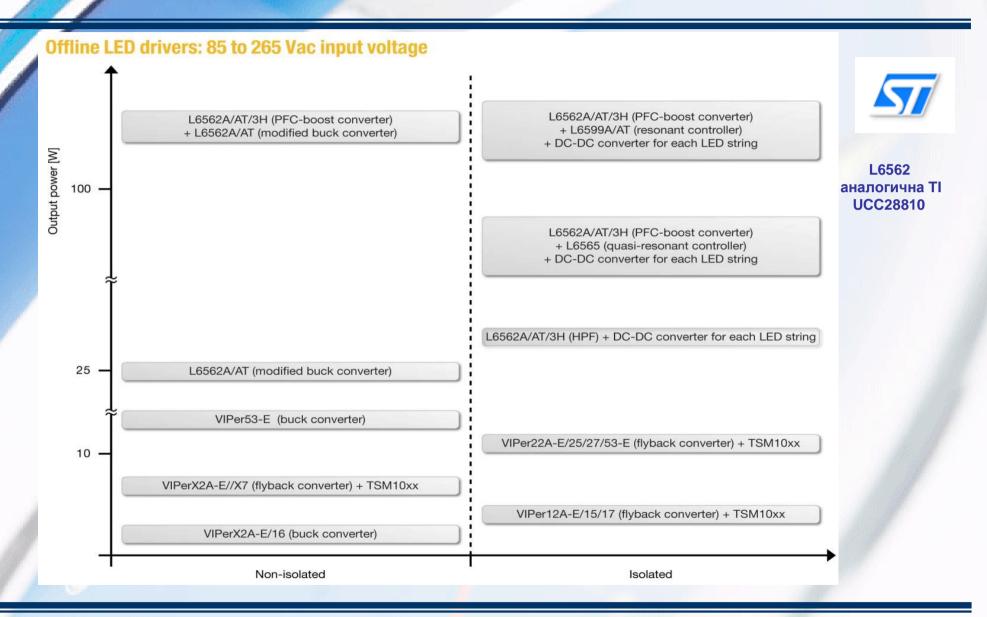

- ON Semiconductor (ON)

- STMicroelectronics (ST)

- International Rectifier (IR)

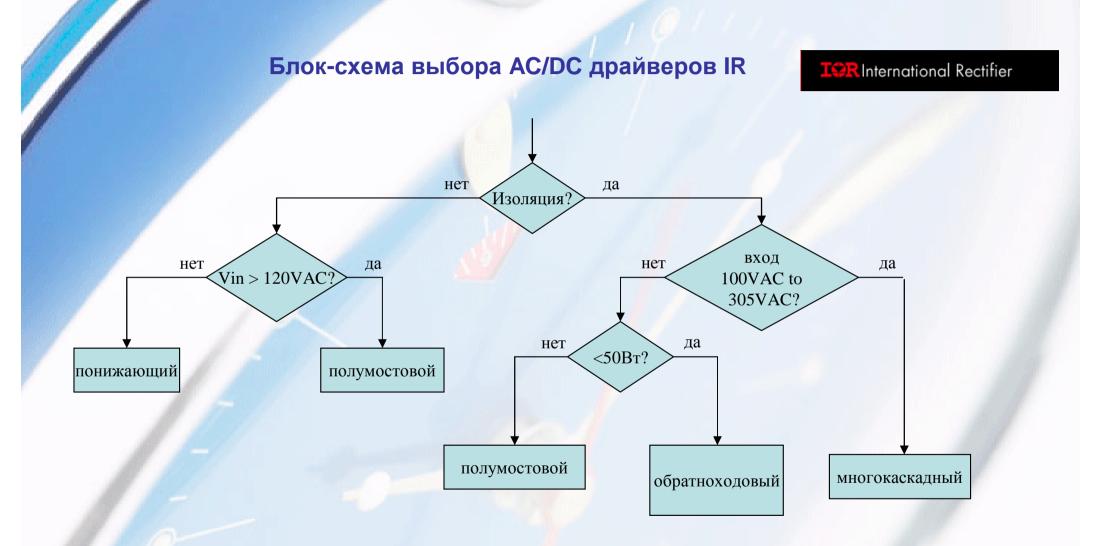
- Macroblock, Zetex, Supertex





AC/DC драйверы TI

AC/DC драйверы ST


AC/DC драйверы IR

ISR International Rectifier

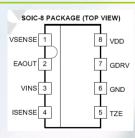
					<u> </u>	I' I' , I SWITTER ST. SWITTER
	IRS25401	IRS25411	IRS2548D	IRS27951	IRS2500	IRS2543D
понижающий	•	•				
повышающий					•	
полумостовой			• 17	•		•
гистерезис	•	•				
ККМ			•		•	
Регулировка по току	•	•				• ///
Регулировка по напряжению			•	•		
вкл/выкл	•	•	•	•		
Тип корпуса	DIP8,SO8	DIP8,SO8	DIP16,SO16	DIP8,SO8	DIP8,SO8	DIP8,SO8

AC/DC драйверы IR

Уличное освещение

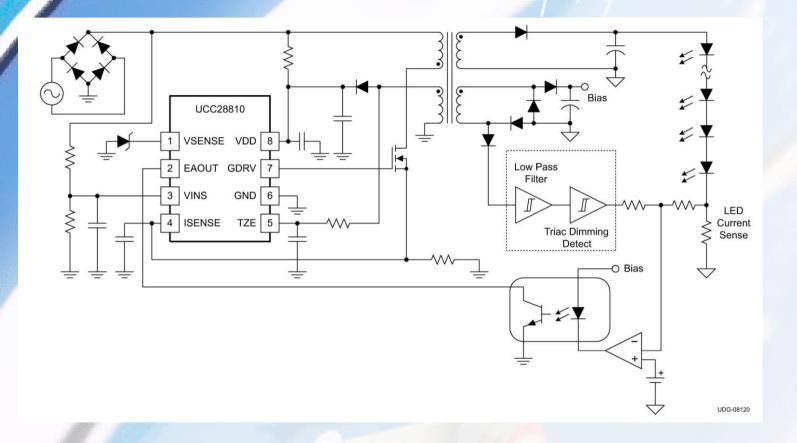
Важно:

- -мощность: десятки сотни Ватт
- -температурный диапазон;
- -класс защиты (ІР);
- -наличие ККМ;
- -защита от импульсов большой энергии;



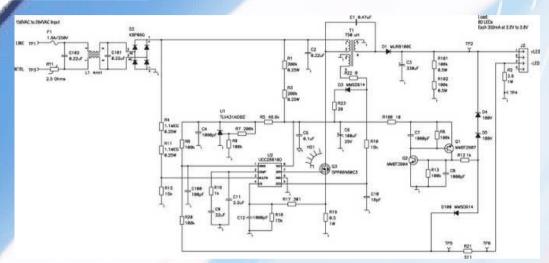
Особенности:

Однокаскадный ШИМ контроллер с функцией коррекции мощности	Низкая стоимость, высокая эффективность, низкие ЭМП.
Возможность регулировки яркости светодиодов от обычного симисторного диммера	Выполнение требований нормативных документов к ИП светильников
Малый ток запуска, встроенный точный опорный источник напряжения	Возможно построение драйвера как гальванически связанного с сетью так и гальванически развязанного
Для управления внешним транзистором имеет встроенный ключ с выходным током до 750мА	Выбор референс-дизайнов с различным включением
Защита от обрыва петли обратной связи	

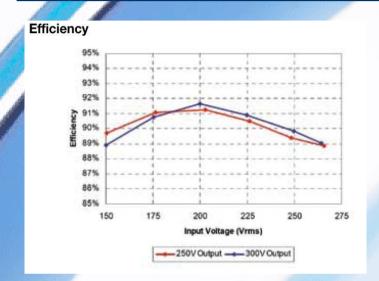

Применение:

Мощные осветительные приборы для коммерческого, промышленного освещения; освещения улиц, стоянок и т.п.

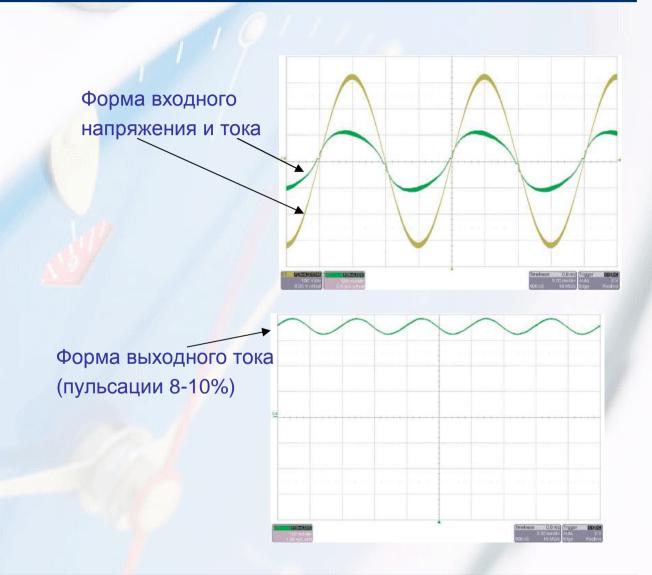
типовая схема включения (изолированный вход-выход)



типовая схема включения (неизолированный вход-выход)

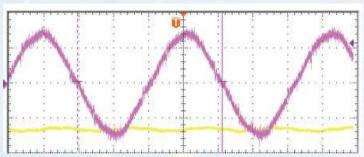




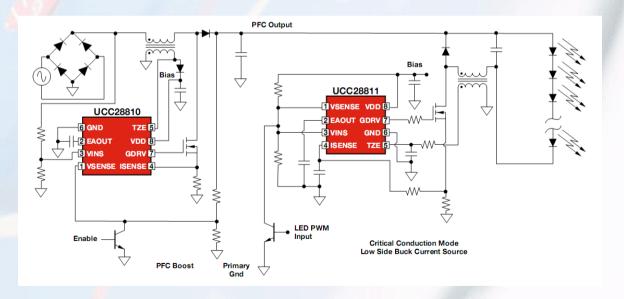

Отладочный модуль РМР3976

Повышающий преобразователь с ККМ Входное напряжение 150-264В Выходной ток 350мА Выходное напряжение до 300В Мощность 80Вт КПД 87-90%

типовая схема включения (неизолированный вход-выход)

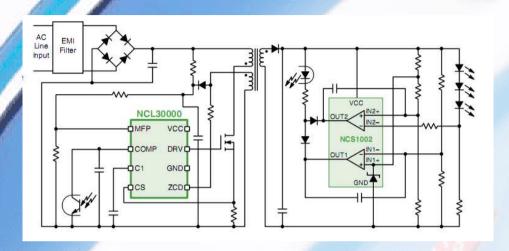

Драйвер UCC28810/11

двухкаскадная схема (неизолированный вход-выход)

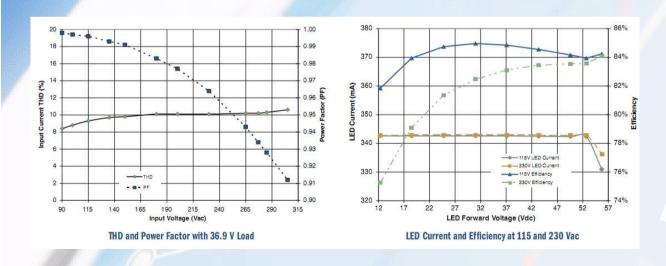


Отладочный модуль UCC28810EVM-002

Форма входного тока



Двухкаскадный преобразователь с ККМ Входное напряжение 90-264В Выходной ток 900мА Выходное напряжение до 110В Мощность 100Вт Коэфф. мощности — более 0,98 КПД — не менее 91%

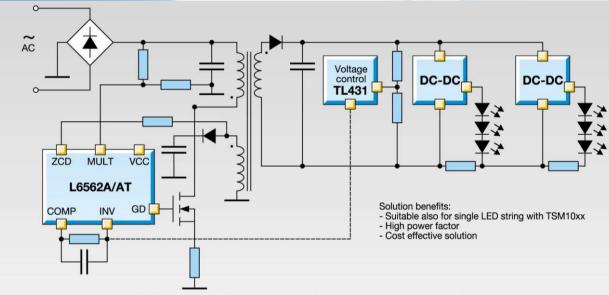


Драйверы NCL30000/30001

- обратноходовый преобразователь с ККМ
- КПД >83%
- коэффициент мощности >0.9
- регулировка тока от симисторного регулятора
- имеет сверхнизкий стартовый ток 24 мкА и низкий собственный ток - 2 мА;
- можно использовать в качестве самостоятельного ККМ в обратноходовых преобразователях.

Мощность до 40Вт Более 40Вт – **NCL30001**

AND 845-D расчет и описание



Применение L6562A/AT

Стабилизатор напряжения + + стабилизаторы тока

Application example: single-stage high power factor flyback converter for multiple LED strings

Совмещение в одном корпусе функции AC-DC преобразователя и корректора мощности

Прецизионный встроенный источник опорного напряжения 1,5%

Низкий коэффициент гармоник

Выполнение требований нормативных документов к ИП светильников

Большой выбор референсдизайнов с различными параметрами

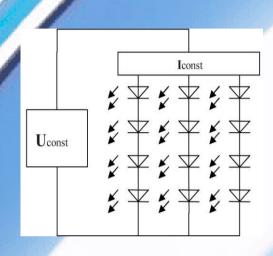
Полумостовой драйвер IRS25411/IRS25401

ISR International Rectifier

Входное напряжение до 600В/200В; Гистерезисный контроль тока (по среднему значению); Ток выходного каскада до 700мА; Uопор=500мВ Защита от пониженного напряжения Оптимален для «длинных» цепочек Синхронный выпрямитель

Входное напряжение 60-170В Задание нужного тока Возможность регулировки тока Защита от обрыва петли ОС

Внутреннее освещение (офисное, производственное)



Важно:

- -мощность: десятки Ватт
- -коэффициент пульсаций;
- -наличие ККМ;

Схема с распределенным питанием

- 1. Можно использовать ранее рассмотренные схемы учитывая нормы на коэффициент пульсаций светового потока
- 2. Можно использовать схему с распределенным питанием источник постоянного напряжения стабилизацию тока осуществить в каждой линейке светодиодов

Плюсы:

- используется обычный источник постоянного напряжения (с ККМ/без ККМ);
- проще конструкция светильника для обеспечения электробезопасности;
- стабильный и независящий от дестабилизирующих факторов ток в каждой цепочке;
- индивидуальная установка тока в каждой цепочке
- низкие пульсации светового потока

Минусы:

- Двойное преобразование: как правило более низкий КПД ???

DC/DC понижающий/повышающий драйвер NCP3065

ON Semiconductor®

- Низкое напряжение обратной связи 235мВ
- Выходной ток до 1,5А
- Частота переключения до 190кГц
- Диапазон входного напряжения 3В-40В
- Возможность использования внешнего ключа
- Возможность регулировки тока ШИМ, аналог
- Различные топологии включения
- Защита от перегрева

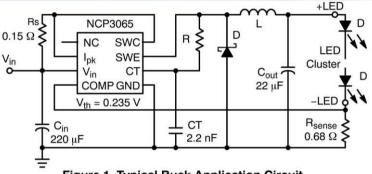
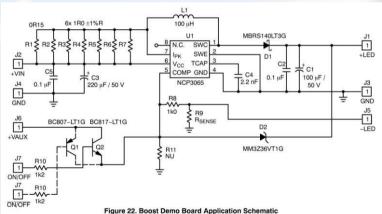
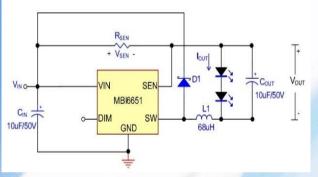



Figure 1. Typical Buck Application Circuit

DC/DC понижающие драйверы Zetex, Macroblock



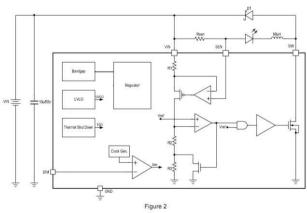
MBI6651

ZXLD1362

VIN (24V)

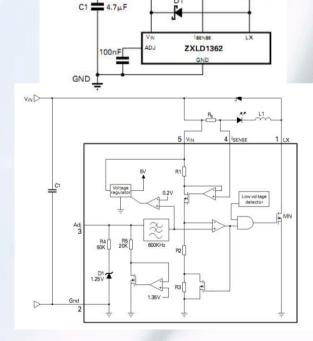
Івых до 1A Uвх 9B-36B

Димминг


Vsen=100_MB

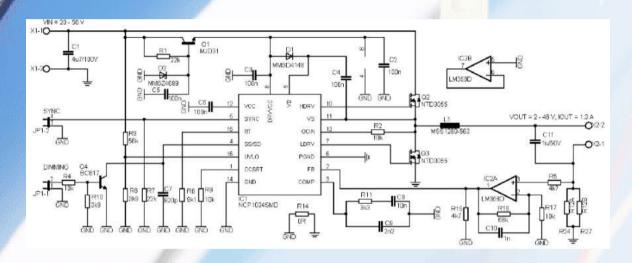
Івых до 1A Uвх 6B-60B Димминг

Vsen=100мВ


SOT23-6

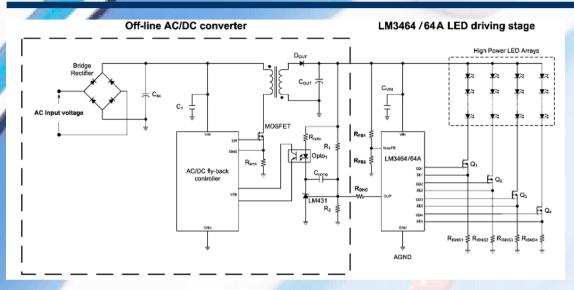
Тип корпуса: TO252, SOT23-5

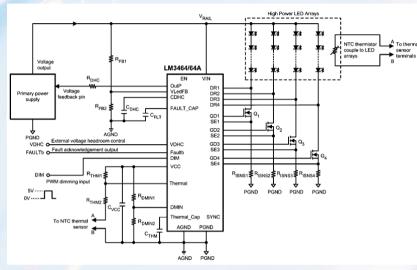
Низкая цена


Применение NCP1034

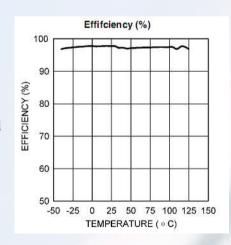
Стабилизатор напряжения в режиме стабилизации тока

ON Semiconductor®




Входное напряжение 20В-58В (100В) Выходной ток до 1,3А Выходная мощность 20-60Вт

Опорное напряжение 1,25В Напряжение питания IC 10В-18В Ток потребления (stat) 3мА


4-х канальный драйвер LM3464 National Semiconductor

Динамическое управление питанием

Четыре канала/индивидуальная установка тока
Диапазон входного напряжения 12В-80В/95В
Непосредственное подключение температурного датчика
ШИМ/аналоговая регулировка
Опорное напряжение 0,2В

Освещение в системе ЖКХ (внутреннее/наружное)

Важно:

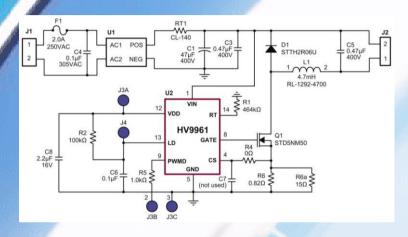
-мощность: единицы - десятки Ватт

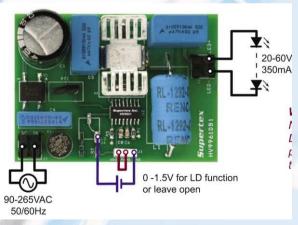
-наличие ККМ?

(в зависимости от мощности);

-температурный диапазон

(наружное применение)


-коэффициент пульсаций


(в зависимости от места применения);

AC/DC драйверы Supertex HV9910/61

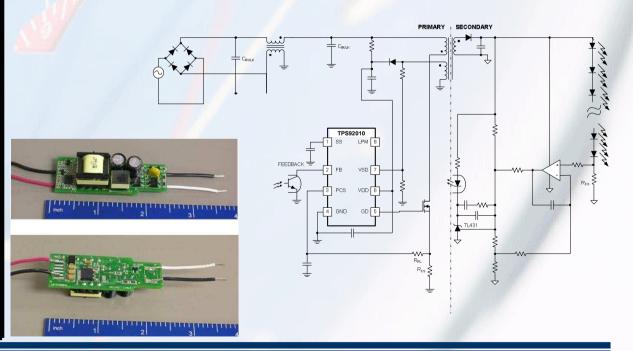
Supertex – мировой лидер в производстве полупроводниковых приборов по высоковольтным технологиям.

Supertex inc.

Простота и невысокая стоимость Выбор частоты преобразования Линейная и ШИМ регулировка тока Защита от КЗ на выходе Стабильность выходного тока 3% Диапазон входного напряжения 8-450В Тип корпуса SOIC8, SOIC16 Vcs=272мВ

Пульсации тока определяются индуктивностью

Выбор референс-дизайнов


AC/DC драйвер TI TPS92010

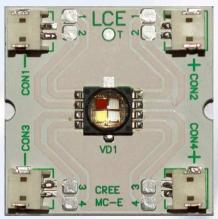
Демо-плата TPS92010EVM-631

Характеристики	Знач.	Ед. изм.
Количество	3-5	
светодиодов	посл.	
кпд	80	%
Мощность	6	Вт
Коэффициент	0.55	1111
мощности		
Выходное	9 - 18	VDC
напряжение		4
Выходной ток	325	мА
Низкочастотные	0	mVpp
пульсации		
Изоляция	Есть	
вход/выход		

- Высокоэффективный (КПД > 87%)
- Совместим с симисторными диммирами
- Защита от перегрева
- Низкий пусковой ток 25 мкА

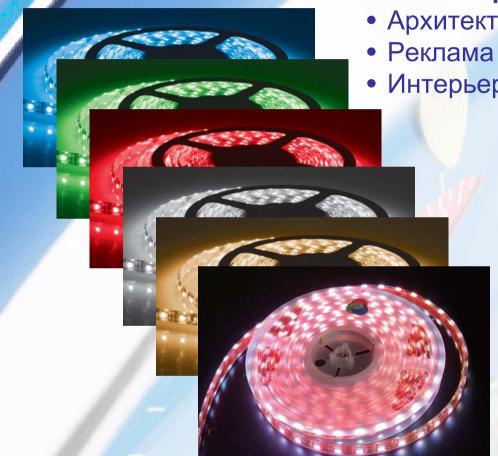
Источник питания – важная часть светового прибора - обеспечивает качественные показатели на протяжении всего срока службы устройства.

Одна из основных задач разработчика —обеспечить питание светодиодов в соответствии с поставленной задачей.



Светодиодные изделия

Применение



• Интерьерное оформление

правление светодиодными изделиями

Диммеры

- 1- 4 выхода

- простое управление по протоколу 1-10B

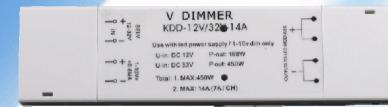
- управление интенсивностью светового потока

RGB контроллеры

- 3- 4 выхода

- управление с пульта ДУ или контроллера **DMX 512**

- 3- 4 выхода


- управление с пульта ДУ или контроллера

-создание цветовых сцен и/или цветодинамического освещения

Диммеры

- 1- 4 выхода
- высокая выходная мощность до 300 Вт (по U), до 100 Вт (по I)
- простое управление 1-10B, датчики
- управление интенсивностью светового потока
- управление светодиодными лентами или модулями (напряжение или ток)
- наличие усилителей сигнала

RGB контроллеры

- 3- 4 выхода
- высокая выходная мощность до 300 Вт (по U), до 100 Вт (по I)
- управление с пульта ДУ или контроллера
- создание цветовых сцен
 и/или цветодинамического освещения
- управление светодиодными лентами или модулями (напряжение или ток)
- наличие усилителей сигнала

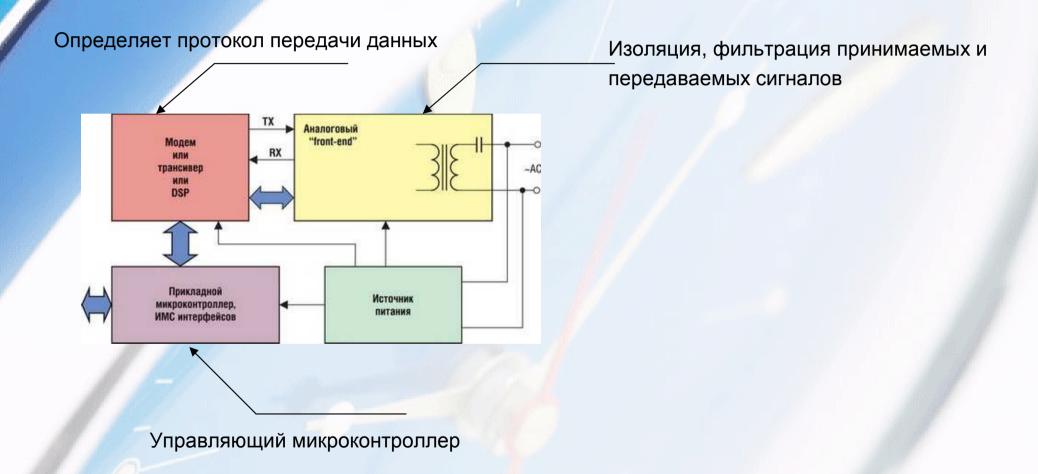
DMX 512

- 3- 4 выхода
- высокая выходная мощность до 360 Вт (по U), до 75 Вт (по I)
- управление с пульта ДУ или контроллера
- -создание более сложных систем освещения, цветовых сцен и/или цветодинамического освещения
- индивидуальная адресация
- управление светодиодными лентами или модулями (напряжение или ток)
- наличие усилителей сигнала

PLC модемы

Использование силовых сетей для передачи данных.

Где это требуется?


- АСКУЭ
- Управление уличным освещением
- Охранные системы
- Системы «умный дом»

Почему PLC модем?

Не надо прокладывать отдельный кабель

Структурная схема PLC модема

Производители PLC модемов

- Texas Instruments (TI)

- ON Semiconductor (ON)

ON Semiconductor®

- STMicroelectronics (ST)

- MAXIM

Характерные особенности

ON Semiconductor®

AMIS-30585/ AMIS-49587

- S-FSK-модуляция (разнос 10 кГц в диапазоне 9-95 кГц)
- Полудуплексный режим
- Скорость передачи 1200/2400 бит/с
- Встроенный микроконтроллер с ядром ARM7-TDMI

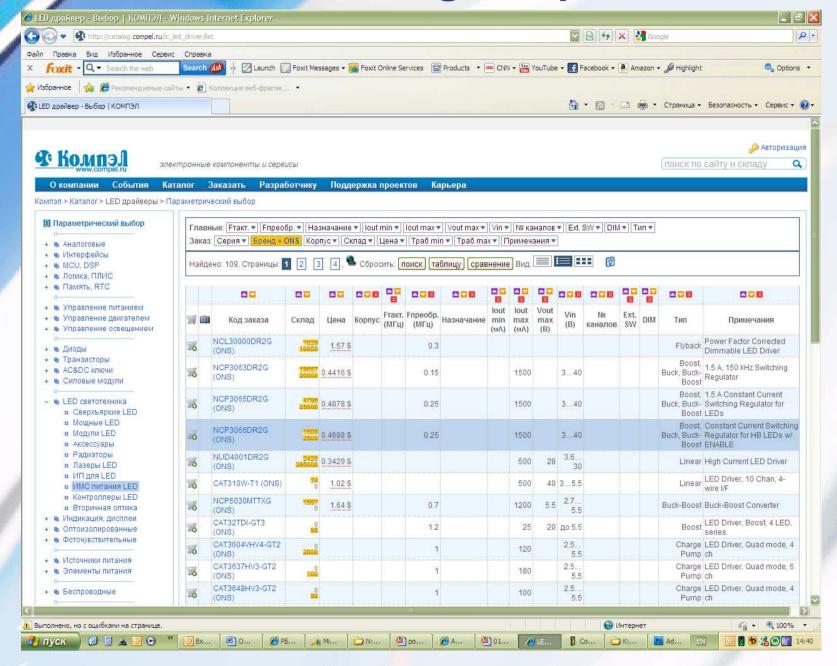
ST7538/ ST7540

- S-FSK-модуляция (разнос 10 кГц в диапазоне 9-95 кГц)
- Полудуплексный режим
- Скорость передачи до 4800 бит/с
- Встроенные линейные стабилизаторы напряжения
 5 В и 3,3 В

Основное назначение:

АСКУЭ и дистанционное управление освещением

Характерные особенности



MAX2990

- OFDM-модуляция (ортогональное частотное разделение)
- Скорость передачи до 100 кбит/с
- Встроенный
 MAC контроллер и 16 битное ядро микроконтроллера MAXQ

Сайт catalog.compel.ru

Контакты

Миронов Сергей

Тел. +7 (495) 995-09-01, доб. 2361

E-mail: s.mironov@compel.ru

http://svet.compel.ru

http://compel.ru